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Abstract

Discrete spline function based method is developed to solve the time fractional Swift-Hohenberg
equation in the sense of Riemann Liouville derivative. Via Fourier method, the developed method
is unconditionally stable. Two schemes are acquired, these schemes are verified to be convergent
of order two and four. Numerical results are demonstrated for various values of fractional
Brownian « as a function of time and also the standard motion « =1 to confirm the applicability
and the theoretical results.
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1. Introduction

The generality of ordinary differentiation and integration to an arbitrary non-
integer order is fractional calculus. For many years, fractional derivatives were not used
in physics despite they have a long mathematical history. In the last ten years, fractional
calculus starts to attract much more attention of physicists and mathematicians because
modern applications recently dominate it in differential and integral equations, physics,
fluid mechanics, mathematical biology, electrochemistry, signal processing, oil industries
and many other applications [4-5,10,15,17]. Exact solutions of most fractional differential
equations cannot be established, so numerical techniques are obligatory to find
approximate solutions for these fractional differential equations. Approximate and
numerical methods have been set such as variational iteration method, Homotopy
perturbation method, Adomian decomposition method, Homotopy analysis method and
collocation method [1-3,6-14,25]. This paper is assigned to new and recent application of
fractional calculus in science and engineering that is variable time fractional Swift-
Hohenberg equation of the form: [16,21-22]

DZOu(x,t) + Diu(x, t) +2D2u(x,t) + L — z)u(x,t) + f () =0, 0<a(t) <1, 1)

with initial conditions and boundary conditions:
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u(x,0) =0.1sin X, u(x,t) = Dfu(x,t)zo for x =0and x =1, t >0, (2)

where Dt“(t)u(x,t) represents the fractional derivative in the sense of Riemann-Liouville,
D)'fu(x,t), k =2,4, refers to the standard derivative of integer order and X = zx/1. Also,
the nonlinear term f (u) is assumed locally Lipschitz continuous, that is for some 8 >0,
|1 (up) — £ (up)] < O|uy—uy]. 3)
Definition 1 [6,18-20] The Riemann-Liouville fractional derivative of u(x,t) is:

1 ak ; k—a(t)-1
[(x=)* =02 y(x, 2)dz, k~1<a(t) <k, (4)

a(t) _ v
P =L o o

where I'(.) is the Gamma function.

Definition 2 [18,21,23-24 ] The Griinwald-Letnikov fractional derivative of u(x,t) is:

CLDEy(x,t) = |imin:[§;h‘](_1)k (a(t)ju(x,t— kh,), (5)
hoo Ny k=0 k

where [t/h] is the integer part of t/h,.
Lemma 1[18] The Grunwald-Letnikov fractional derivative satisfies that:
D Vu(x,t) =h“Oaru(x,t)+0(h), h —0. 6)

Then the Grinwald-Letnikov fractional derivative is equivalent to Riemann-Liouville
fractional derivative (5) as:

Dta(t)u (x,t) = GL Dta(t)u (X,t) ~ ht—a(t)Aftl[(t)u (x,t) (7

This paper is prearranged as follows: Section 2 is devoted to deriving a discrete
cubic spline method. In section 3, stability analysis of our approach is discussed. In
section 4 we study the convergence analysis of the proposed scheme. Numerical results

are offered to demonstrate the applicability and the accuracy in section 5. Finally, in

section 6 we conclude the results of the proposed method.

2 Discrete cubic spline solution

We wish for solving the variable time fractional Swift-Hohenberg equation (1-2).
we first define the discrete spline function, let @:0 =X, <X, < X,...< X, =1 be a uniform
mesh of [0,1] with @=X; —X;_,1 =1,2,3,...,n. Following [26], then the discrete cubic

spline has the following form:



si(x’tj’w'h)szij—1+MMij
6w 60
I G DIV G R B A Ci P VE ot BY
oo 6 M?s] 1) +ls 6 M/'] 0 (8)

Applying the continuity conditions, we have

sl,—2sl +sl, =yMJ + pMI M i=1,2,..,n—1, )
where
2 2 2 12
y:a) h and ﬂ:% (10)

For h =w/«/2, the discrete spline Numerov method can be achieved by the scheme (9)

as:

i+1

Also, for h—0, scheme (9) reduces to the following scheme of ordinary cubic spline:

2
. - - a) . . -
Sy —2s) +s) = F[Mij—l +4M{ + M,

li=12,..,n-1.

Lemma 2[26]

Let s be a cubic spline interpolation of u defined by s(x;,t;) =u; , and assume that:

D"ueC(0,1)x(0,T),0<sm=<6 and D" uueC(0,)x(0,T),0<m <2,
then the next relation holds:

o’ul® = (M, —2MJ + M )+ O(?). (12)
Using Eqgns (11-12), we acquire that

@y +B)o* M =ul; —2u! +ul; —ye'u!® +O(e). (13)
Using Eq.(13) in Eqg.(11) , we get:

ul, —4ud +6u) —4ul +ul, =0 Ul + pul® Y 4 ite) [1=2,3,...,n-2,  (14)

The relation (14) gives (n-2) algebraic equations in n unknowns. We need two more
equations, one at each end of the range of the integration interval. Taylor series and the
method of undetermined coefficients can be used to derive the two end conditions. The

first end condition near x=0 is given by:



—2ud +50u) —4u) +ud =0 ui® + * (i@ + U@ £ ul® 1y uI®) 4 ite)

The second one near x=I is given by:

' ' ' ' 2§, A Q4 (4 i(4 (4 '
—2Uy +5U7 ; —4Uj 5 +Uy 3 =—@ Ur{( '+ (7/1Ur{( )+72Ur{£1) +73Ur{52) +7/4ur{£3))+|ter{1

For the local truncation errors Ite] where i =1,n, we have that:

lte = O(h +a*) for (34,75,75:7,) =(2,6,3,0)/12.
"ot +@®) for (3,75 7s 74) = (28,245,56,1) 1 360,

(15)

(16)

Lemma 3 The local truncation errors lteJ,i =2,3,....n -2 correlated with the scheme

(14) are :

lte] = (11— f—-2y)0*Dlul + (é— 7)@®Dlu) +O(h +0®),i=2,3,..,n-2, .

(17)

Proof To acquire the local truncation error, Taylor series expansion are used at the point

(Xi ’tJ ) .
Recall to our problem, we have
0@ = Dfu) =D V) —2Dfs) - (1- )s! - .,

Using finite difference method, we get

D2s) =

i ] ]
X*l 2

L O(w?).
w
Using Eqg. (5) and utilising that a(t;) = «; , we get:

o 1 J :

%o ik

D,”’s; _htaj Zgaj,k Si
k=0

where gajvk,k =0,1,2,....] are the Griinwald-Letnikov weights,

a; +1)

Ok =A— )9, k1K 22,9, g =1and g, ; =—a;

i
Substituting from Eqgns. (20) and (19) into Eq. (18), we get

_ -1 J i 2 , - ' j j
UiJ 4 ZTikzbgaj K SiJ k —;(Sijfl_zsiJ ""Sij+1)_(1_:u)siJ _fij'

h

(18)

(19)

(20)

(21)

(22)

Replace i byi—1 and i+1in Eq. (22) respectively and then substitute in Eq. (14), we

have the following consistency relation can be established:



4

ot d . j . j .
F(ykzogaj K Sij—lk +ﬂkzogaj K Si “ +7k2 9q k Sij+1k) =
— = =0
—s),+4s), —6s) +4s), =5}, + & (k5] , + ps) + 58] + ps)y + xS,
~o' (yf + gl +yf)) Ji=23.,n-1and j=12,..,m, (23)
where
-2 4y -2 yIl+a;)
K:CO—Z}/' p:yw—zlg—y(l—/u)-i-—a]] and
_ I'l+e;
5:47—+2“"B_ﬂ(1_,u)+L_1)_ (24)

h
Let S!=(s/)andU ! =(ul)be the approximate and the exact solutions

respectively. Then we can write the system given by Eqns. (15), (16) and (23) in matrix

form as follows:

4
w

4 _ j _ .
(A +0'C —%B)U j :FBKZQ“J*U I 4 *BFI,j=1,2,...m, (25)
=1

where F1 =(f.}),i =1,2,...,n and the matrices A,B and C are:

-5 4 -1 V2 73 Vs
4 6 4 -1 v By
-1 4 -6 4 -1 v By
A= - , B =
-1 4 6 4 -1 vy By
-1 4 6 4 v By
-1 4 5 Ya V3 72
and
0, O3 O3
p O p K
K p o0 p K
C =




3 Stability analysis

In this section, the stability of our proposed scheme will be investigated via
Fourier series method. We suppose that sij, i=123..,nandj=212,.,m be the

approximate solution of Eq.(23) and for simplicity, we will rewrite this equation without

the nonlinear term. This leads to

i ; i ; i .
-k -k ik _
Y290 kSia B2 9ukSi +7 2o kSia =
k=0 k=0 k=0

aj _ . . . _ . . . . .
r2)—4[—3ij_2 +4s),—6s! +4s], —s] ]+ (ks + psiy + 58] + psly +xs,,)
,1=23,..,n-1and j=12,...,m, (26)
_h% a . 4h%i o i _ph%i o . 4h%i a .
( 24 +h I K)s), +( 24 +h p—y)sty+( C:Z +h1 65— p)s +( d +h p—y)si,

CU4
LN BN R ik, gy ik i
H— + N K)Si, =7 2.0, kSia B2 0a kSi +7 2094 kSin s
(0 k=1 k=1 k=1
,1=2,3,..,n=1and j=12,...,m, 27)

Eq.(27) will be rewritten as:

. . . . . j , j . J :

j i i i i ik ik ik

ASi 5 +8,8) 1 +2S] +8,8 1 +2Si = (¥ 2 04k Sia B2 9a kSi 7204 kSin ),
k=1 k=1 k=1

1=23..,n—1land j=12,..,m, (28)

where =" a = (Ch+h% k)8, = (4 +h% p— 7)) anda, = (—6h + K9 5 — 3).
(4]

4 )
Lemma 4: [9]

For 0 <a(t) <1 the coefficients g, .k =0,12,... satisfies

(D) 9awyo =19y =—at) 9@k <Ofork =1,2,...,

0 n
(2) kzoga(t)yk = O,Vn S N +,_kz ga(t),k < 1
= =1

The round-off error is defined as:
g =ul-s} i=23.,n-1landj=12..,m (29)

This error satisfies the Eq.(28), then we have:



. : . . . i : j ; J -
j j j j i j—k ik jk
& _p T A1 TAE] + &y TS —VKZ 9g, k i +ﬂk2 9g k €i +yk2 Yg, k i1
-1 -1 -1

i=23..,n-1land j=12,..,m, (30)

Let us represent the error function £(iw) =¢;,i =0,1,2,...,n as a Fourier series
n .
&= A" @=y-1,i=01..n, (31)
k=0

where g, =k .
For measuring the magnitude of the error vector

s (x)=[g),el,...e) T .j =012,...m, we use the discrete |2 norm of the form:

|«

n-1 2
F=(%whﬂjJ:Qme. (32)
Assume that the solution of the error Eq.(30) has the form:
& =&e™ g =e™, (33)
and 9 is a complex number.
Substituting by Eq. (33) into Eq.(30), we obtain

@q(i-2)o @q(i-)o @io @q(i+) o @q(i+2)w
a,&e”0 20 1 g, £,e7 0 1 g, 2,079 1 ,£,e70 4 g £,e701HD0 =

j . j . j .
(r2 9, k fjfkewq(lil)w"'ﬂz 9q, k fjfkewaw"'?/z 9q, k fjfkewq(lﬂ)w)
k=1 k=1 k=1
,i=23,...,n=1land j=12,..m. (34)
By straightforward, this equation can be simplified into the form:

&; (2a,cos2qw +2a, cosqw +ag) = JZ(Z;fcosqawrﬂ)gaj,k Sy 1=12,.,m, (35)
k=1

From which we can accomplish that

3 (2y cosqw+ f)
(2a, cos2qw + 2a, cosqw + a,)

i

(—aj§j1+ki gaj,kfj,k), j=12,..,m, (36)
=2

Lemmabs

If &;,j=12,...,m, satisfy Eq.(36), then we have ‘cfj ‘ <|&|-

Proof. Using the mathematical induction, for j =1 in Eq.(36), then we acquire



~ —a;(2y cosqw + f3)
- (2a, cos2qw + 2a, Cosqw + a,) 0

1

Then

|§|<| ~a; (2y cosqo+ f3) |
He ‘(2a1c032qa)+ 2a, cosqa)+a3)‘

ol
Substituting by the values of a;,a,anda, we find that
(28, cos2qw + 2a, cosqw +a,) = —( B + 2y cosqw)(L+ (1— y)h[a"
aj
T+ a;) + 2 sin2(32) s hsin*(32),
w 2 2

It can be confirmed that

| ~a; (2y cosqa+ f3) |<1
‘(2a1 cos2qw + 2a, cosqa)+a3)‘

Then
|§1|§|§o|’ (37)

Now assume that |, | <|&|,n =2,3,...m.

Now returning to Eq.(36) and using Lemma 4, we get

P ,kaj_k ‘), j=12,..,m,

(2ycosqu+ p) (@ ‘5_ 1‘+i
L et

&<
"‘ (23, cos2qw + 2a, COSq @ +a,)

9q k ‘)|§o|

(2y cosq+ f) (@ + Jz
(2a,c0s2qw + 28, cosqo +a,)| ' k=

HE

(2y cosqo + B) (@ +(—i
. =1

(2a, c0S2q @ + 2a, COSq @ +a,) ga,-,k‘ )&

IN

(2y cosqa+ f3)
i (l-a.
(2a, c0S2q @ + 2a, COSqw +a,) (@; +(1-a;))[&|

(2y cosqao + B) &),
(2a, cos2qw + 2a, cosqw +a,) 0

IN

IN

Then we accomplish that ‘gj ‘ <|&|i=123..,m.

Theorem 1
The spline solution of the Eqgns. (1-2) defined by Eq. (23) is unconditionally stable.

Proof



Using EQ.(32) and Lemma 5, we achieve that

j

< Hao

|« 2 1=123..m.

|2

This completes the proof.

4 Convergence

The numerical scheme for the fractional partial differential equation is convergent
of order p if and only if it is stable and consistent of order p [9]. In this section, we will
discuss the convergence of our proposed scheme by using Fourier series method.

We suppose that u(x;,t;) be the exact solution of Eq. (23) represented by Taylor series,
then from Lemma 3 and using (7, ) =(1,10) /12, we acquire that the truncation error is:
T =0(h,0").
Then, there is a positive constant ¢, depends on the analytical solution u(x;,t;) such
that:
T<ch+o®), (38)
The error is defined as follows:
el =u(x.t)-ul ,i=23..,n-landj=12..m, (39)
Then we get:
(7i P ,ku(Xi711tj—k)+ﬂi e KU(X; 1tj—k)+7i P KUXiti )
k=0 k=0 k=0
=Hh[-u(X_2,t;) +4u(X_y, t;) —6uU(x; b)) +4u(X g, t;) —U(Xio, t5)]
+h (KU (X _p0t5) + pu(Xi_g, b)) +SUXG ,t5) + pu (XL b)) + &U(XG,0.t5))
WG A )T 1 =23 .,n-1andj =12,...,m,  (40)
where ) =f (u(x;.t;)).
To get the error equation, we subtract Eq. (23) from Eq. (40), then we achieve:

i . i . i .
K K K
(Vk%gaj ,keijfl +ﬂk209aj ,keij +7k%gaj ,keiJ+1

= fel, +de] -6} +4e), —e) 1+ hT (ke , + pol  +00) + ol +rel)



—hI (el + e+l )T i=23.,n-1landj =12,.,m, (41)
where €1 =f.J —f.J and from condition (3) we get that & <@e/, then the error

equation will be
j - j - j -
(sz‘bgaj ,keijflk +ﬂk209aj K& “ +7k209aj ,keiJ+1k
=4°f[_eij-2 +4eij—l_6eij +4eij+1_eij+2]+htaj (Keij—z +Peij—1+5eij +peij+1+Keij+2)
—hI0(el +pel +ye) )-T) i=23.,n-1landj=12,..,m, (42)

with error boundary conditions , ed =e} =0, j =1,2,...m .

Eq.(42) can be rearranged as in the previous section, and it will take the form:

. . : . ; i ; i ; ] ;
j j j j i ik ik ik
e, TR Hafy +aLi, +agi, —(7kZ 9g; k €ia +ﬂk2 9q, k Ci +yk2 g, k€1 )
=1 =1 =1

+h0(e) + e} +yel )+T) i =23.,n-1landj=12,..,m, (43)
We define the discrete functions

eJ(X)_ e|J When Xi—a)/2 <XSXi+a)/2l |:1’ 2"n_1’
0 when0<x<w/2orl-w/2<x<],

and

Ti(x)= T when x__,, <X< X, .0, 1=12,...,n—1,
0 when 0<x<w/2orl-w/2<x<],

el (x)and T J(x) can be expanded in Fourier series as

)= 3 4K, j=01,..,m, (44)
k=—0
TI) = 3 7, (K™, j=0,L,..,m, (45)
k=—c0
where
A;(K) = }ei (x)e 2@ dx, (46)
0
n;(K) = }T J(x)e 27 dx, (47)
0

10



From definition of |2 norm and Parseval equality, we get

o ,22 _ :]Z_llw\eij\z _ i‘ej ([ dx = kiy" ®[, j=01...m, (48)
and
HTj IZZ _ ?z_iwhii‘z _ i‘T j (x)‘2 dx = kf“w‘m (k)‘z, j=041,..,m, (49)
Assume that
e =1,6™, (50)
and
Tij :m_ewgiw, (51)

where ¢ =27k .
Substituting by Egs. (50) and (51) into Eq.(43), we obtain:

1
- (2a, cos2¢w + 2a, COSgw + a,)

i
j ((2y cosgo+ B)[(—a; + 0)49)/11'—1 + Ezga,. )Aiad+m;),

j=12,..,m, (52)

and

(2a, COs 26w + 2a, COS g +a,) = —(f3 + 2y cos gw)(L+ (L — p)h

%
1+ 051.)+8h‘2 Sinz(@))—S‘h'Sin‘l(g), (53)
@ 2 2
Lemma 6
If  A;.4,(J =0,1,..,m) satisfy Eq.(52) then ‘/Ijﬂ‘ﬁ (j +1c|m| where  cjis

a positive constantand j =0,1,....m.

Proof
From Eq.(38) and Eq.(49), we get
HTj . <gVno(h +o")

<c(h+o') , j=01..m, (54)

where ¢, =c,\nw =c,| .

From Eqgs.(47) and (49), there is a positive constant ¢ so that

11



| <Calm| i =0.1.2,...,m, (55)
and we have that
29 =0. (56)
Using the mathematical induction, from Eq.(52), for j =1 we get :

1
= 770’
(2a, cos 2w + 2a, COS gw + ;)

A

From Egs.(53) and (55) we can find that;

2] <[] < C5r70]

Now suppose that
A l=csilml, i=12...m, (57)

From Egns (52) and (55) and Lemma 4 and by the same way as in the previous section

we can find that:
1 |

(2a, cos 2¢w + 2a, cos g + a,) |
1

(2a, cos2¢w + 2a, COSgw + a,)
1

(28, cos 2gw + 2a, COS g + a,)
1

(2a, cos2¢w + 2a, COSgw + a,)
1

(2a, cos2¢w + 2a, COSgw + &)

V’j +1‘ <(J +1)C3|771|1 (58)

\/1

i = gaj,k‘|/1j-k+1]+|77j+1]’

[(2y cosgo+ Pl(a; +&'0)|2, |+ ’z

IA

i
[(2y cosco+ B)(aj +@"0)j + X g, (i —k +D]+1kc, |
k=2

IN

i
[(2y coscw+ P)l(aj +@"0)j + (=2 9, —a;)] +1c,|m|
k=1

IA

[(27 cosco+ B)(e; +@'0)j +A—a;) j1+11cs|m]

IN

[(2y cosco+ B)(1+ @'0) j +1Ic5|m|

Theorem 2

The spline solution of the Eqns (1-2) defined by Eq. (23) is convergent, and the order of
convergence is O(h, +o%).

Proof: From Eqns.(48), (49), (50) and Lemma 6, we can find that

e, o= (G + 2T

<c(h + %),

2= (] +1)c L, (hy + ")

12



where ¢ =(j+1)c,C,. This completes the proof.

Numerical Results:
In this section, the numerical results of u(x,t) for the non-linear time fractional

Swift Hohenberg equation has been achieved for the one-dimensional domain for various

values of fractional Brownian « as a function of time subjected to 0 < «(t) <1 and also

the standard motion « =1. The effect of the parameters and length of the domain on the
results are presented graphically.

In the following, the approximate solutions u(x,t) for various values of « as
a function of time using (3, 7,.73.74) =(2,6,3,0)/12 are represented in Fig.1 and
Fig.2. Figs (4) and (4) represent the approximate solutions u(x,t) using
(71,7273, 74) =(28,245,56,1) /360 . Fig.(4) displays the approximate solutions u(x,t)

for the standard motion ¢ =0.5 and « =1.

13
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Fig.1, Approximate solutions u(x ,t)with (y;,7,,73.74) =(2,6,3,0)/12.
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Fig2, Approximate solutions u(x,t)with (y4,75,73,7,) =(2,6,3,0)/12.
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Fig.3, Approximate solutions u(x ,t)with (y,,7,,73,74) =(28,245,56,1)/360 .
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Fig.4, Approximate solutions u(x,t) using (yy,7,,73 74) = (28,245,56,1)/ 360 .
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These figures demonstrate the effects of x and | on the solutions as illustrated in

resulted figures. Fig.1, Fig.2 and Fig.3 express the effect of time varying fractional order
a(t), on the solutions. Comparing the obtained results plotted in Figs 1 and 3, it can be

found that there is a relatively varying in the results according to the used scheme. It can
be observed that our obtained results for a¢=1and «=0.5are matched with that

published in [16, 18, 21-22]. All calculations are implemented with MATLAB R2015a.

Conclusion

In this paper, discrete spline function is used to approximate solution of variable
time-fractional Swift-Hohenberg equation in the sense of Riemann Liouville derivative.
The scheme is tested for some cases. The results demonstrate the reliability and
efficiency of the algorithm developed. Stability and convergence analysis of the methods
are presented. For the illustration of the practical usefulness of the proposed methods,
some numerical results are included.
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