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Abstract 

Discrete spline function based method is developed to solve the time fractional Swift-Hohenberg 

equation in the sense of Riemann Liouville derivative. Via Fourier method, the developed method 

is unconditionally stable. Two schemes are acquired, these schemes are verified to be convergent 

of order two and four. Numerical results are demonstrated for various values of fractional 

Brownian  as a function of time and also the standard motion 1   to confirm the applicability 

and the theoretical results. 
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1. Introduction 

The generality of ordinary differentiation and integration to an arbitrary non-

integer order is fractional calculus. For many years, fractional derivatives were not used 

in physics despite they have a long mathematical history. In the last ten years, fractional 

calculus starts to attract much more attention of physicists and mathematicians because 

modern applications recently dominate it in differential and integral equations, physics, 

fluid mechanics, mathematical biology, electrochemistry, signal processing, oil industries 

and many other applications [4-5,10,15,17]. Exact solutions of most fractional differential 

equations cannot be established, so numerical techniques are obligatory to find 

approximate solutions for these fractional differential equations. Approximate and 

numerical methods have been set such as variational iteration method, Homotopy 

perturbation method, Adomian decomposition method, Homotopy analysis method and 

collocation method [1-3,6-14,25]. This paper is assigned to new and recent application of 

fractional calculus in science and engineering that is variable time fractional Swift-

Hohenberg equation of the form: [16,21-22]    

( ) 4 2( , ) ( , ) 2 ( , ) (1 ) ( , ) ( ) 0, 0 ( ) 1,t
t x xD u x t D u x t D u x t u x t f u t                    (1) 

with initial conditions and boundary conditions: 
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( ,0) 0.1sin ,u x x 2( , ) ( , ) 0xu x t D u x t  for 0x  and , 0,x l t                       (2) 

where ( ) ( , )t
tD u x t represents the fractional derivative in the sense of Riemann-Liouville, 

( , ), 2,4k
xD u x t k  , refers to the standard derivative of integer order and /x x l .  Also, 

the nonlinear term ( )f u  is assumed locally Lipschitz continuous, that is for some 0  , 

 1 2 1 2( ) ( ) .f u f u u u  
                                                                  (3) 

Definition 1 [6,18-20] The Riemann-Liouville fractional derivative of ( , )u x t  is: 

( ) ( ) 1

0

1
( , ) ( ) ( , ) , 1 ( ) ,

( ( ))

k t
t k t

t k
D u x t x t u x z dz k t k

k t t

 
    
  


  


               (4) 

where (.) is the Gamma function. 

Definition 2 [18,21,23-24 ] The Grünwald-Letnikov fractional derivative of   ( , )u x t  is: 

0

[ / ]
( )

0

( )1
( , ) lim ( 1) ( , )

t

t

n t h
GL t k

t t
h kt

t
D u x t u x t kh

kh





 
   

 


 
,                                         (5) 

where [ / ]tt h  is the integer part of  / tt h . 

Lemma 1[18] The Grünwald-Letnikov fractional derivative satisfies that: 

( ) ( ) ( )( , ) ( , ) ( ), 0.
t

t t t
t t t thD u x t h u x t O h h                                     (6) 

Then the Grünwald-Letnikov fractional derivative is equivalent to Riemann-Liouville 

fractional derivative (5) as: 

 ( ) ( ) ( ) ( )( , ) ( , ) ( , )
t

t GL t t t
t t t hD u x t D u x t h u x t                                                    (7) 

This paper is prearranged as follows: Section 2 is devoted to deriving a discrete 

cubic spline method. In section 3, stability analysis of our approach is discussed. In 

section 4 we study the convergence analysis of the proposed scheme. Numerical results 

are offered to demonstrate the applicability and the accuracy in section 5. Finally, in 

section 6 we conclude the results of the proposed method. 

 

2 Discrete cubic spline solution 

We wish for solving the variable time fractional Swift-Hohenberg equation (1-2). 

we first define the discrete spline function, let 0 1 2: 0 ... 1nx x x x      be a uniform 

mesh of [0,1]  with 1, 1,2,3,..., .i ix x i n   
 
Following [26], then the discrete cubic 

spline has the following form: 
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{3} {3}
1

1

( ) ( )
( , , , )

6 6

j ji i
i j i i

x x x x
s x t h M M

 




 
 

 

 

2 2 2 2
1

1 1

( ) ( )( ) ( )
[ ] [ ] ,

6 6

j j j ji i
i i i i

x x x xh h
s M s M

 

 


 

  
   

                 

(8) 

Applying the continuity conditions, we have  

  1 1 1 12 , 1,2,..., 1,j j j j j j
i i i i i is s s M M M i n                                  (9) 

where   

  

2 2 2 22
and

6 6

h h 
 

 
   .                                                    (10) 

For / 2h  , the discrete spline Numerov method can be achieved by the scheme (9) 

as: 

2

1 1 1 12 [ 12 ], 1,2,..., 1,
12

j j j j j j
i i i i i is s s M M M i n


         

   
  

             (11)
 

Also, for h→0, scheme (9) reduces to the following scheme of ordinary cubic spline: 

2

1 1 1 12 [ 4 ], 1,2,..., 1.
6

j j j j j j
i i i i i is s s M M M i n


         

 

Lemma 2[26] 

Let s  be a cubic spline interpolation of  u  defined by ( , ) j
i j is x t u , and assume that: 

(0, ) (0, ), 0 6m
xD u C l T m        and     

* *(0, ) (0, ), 0 2,m
xD uu C l T m     

then the next relation holds: 

  
2 (4) 4

1 1( 2 ) ( ).j j j j
i i i iu M M M O                                                  (12) 

Using Eqns (11-12), we acquire that  

 2 4 (4) 6
1 1(2 ) 2 ( ).j j j j j

i i i i iM u u u u O                                         (13) 

Using Eq.(13) in Eq.(11) , we get: 

4 (4) (4) (4)
2 1 1 2 1 14 6 4 ( ) , 2,3,..., 2,j j j j j j j j j

i i i i i i i i iu u u u u u u u lte i n                       (14) 

The relation (14) gives (n-2) algebraic equations in n unknowns. We need two more 

equations, one at each end of the range of the integration interval. Taylor series and the 

method of undetermined coefficients can be used to derive the two end conditions. The 

first end condition near x=0 is given by: 
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2 (2) 4 (4) (4) (4) (4)

0 1 2 3 0 1 2 1 3 2 4 3 12 5 4 ( ) ,j j j j j j j j j j
ou u u u u u u u u lte                       (15) 

The second one near x=l is given by: 

2 (2) 4 (4) (4) (4) (4)
1 2 3 1 2 1 3 2 4 32 5 4 ( ) ,j j j j j j j j j j

n n n n n n n n n nu u u u u u u u u lte                    

 

   (16) 

For the local truncation errors where 1, ,j
ilte i n   we have that: 

4
1 2 3 4

8
1 2 3 4

( ) for ( , , , ) (2,6,3,0) /12.

( ) for ( , , , ) (28,245,56,1) / 360.

tj
i

t

O h
lte

O h

    

    

  
 

 

 

Lemma 3 The local truncation errors , 2,3,..., 2j
ilte i n   correlated with the scheme 

(14) are : 

4 4 6 6 81
(1 2 ) ( ) ( ), 2,3,.., 2,

12

j j j
i x i x i tlte D u D u O h i n               .          (17) 

Proof To acquire the local truncation error, Taylor series expansion are used at the point 

( , )i jx t . 

Recall to our problem, we have  

  
( )(4) 4 22 (1 ) ,jtj j j j j j

i x i t i x i i iu D u D s D s s f


                                  (18) 

Using finite difference method, we get 

  
2 21 1

2

2
( ).

j j j
j i i i

x i

s s s
D s O  

  


                                                         (19) 

Using Eq. (5) and utilising that ( )j jt  , we get: 

,

0

1
j

jj

j
j j k

t i k i

kt

D s g s
h









  ,                                                                 (20) 

where , , 0,1,2,....
j kg k j   are the Grünwald-Letnikov weights, 

 , , 1 ,0 ,1

1)
(1 ) , 2, 1 and .

j j j j

j
k k jg g k g g

k
   





                        (21) 

Substituting from Eqns. (20) and (19) into Eq. (18), we get  

(4)
, 1 12

0

1 2
( 2 ) (1 ) .

jj

j
j j k j j j j j

i k i i i i i i
kt

u g s s s s s f
h







 




                          (22) 

Replace i  by 1i   and 1i  in Eq. (22) respectively and then substitute in Eq. (14), we 

have the following consistency relation can be established: 
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4

, 1 , , 1
0 0 0

( )
j j jj

j j j
j k j k j k

k i k i k i
k k kt

g s g s g s
h

  


    

 
  

    

 
4

2 1 1 2 2 1 1 24 6 4 ( )j j j j j j j j j j
i i i i i i i i i is s s s s s s s s s                       

4
1 1( ) , 2,3,..., 1 and 1,2,..., ,j j j

i i if f f i n j m                                 (23) 

where  

 
2 2

(1 )2 4 2
, (1 ) and

j

j

th


   
   

 

  
             

                                           
2

(1 )4 4
= (1 ) .

j

j

th


  
  



  
                                                 (24) 

Let ( ) and ( )j j j j
i iS s U u  be the approximate and the exact solutions 

respectively. Then we can write the system given by Eqns. (15), (16) and (23) in matrix 

form as follows: 

4 4
4 4

,
1

( ) , 1,2,..., ,
jj j

j
j j k j

k
kt t

A C B U B g U BF j m
h h

 

 
 



                              (25) 

where ( ), 1,2,...,j j
iF f i n  and the matrices ,A B  and C are: 

5 4 1

4 6 4 1

1 4 6 4 1

1 4 6 4 1

1 4 6 4

1 4 5

A

  
 

 
 
   
 

  
   
 

  
   

 ,

 

2 3 4

4 3 2

B

  

  

  

  

  

  

 
 
 
 
 

  
 
 
 
 
 

  

and   

1 2 3

3 2 1

C

  

   

    

    

   

  

 
 
 
 
 

  
 
 
 
 
 

 . 
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3 Stability analysis 

In this section, the stability of our proposed scheme will be investigated via 

Fourier series method. We suppose that , 1,2,3,..., and 1,2,...,j
is i n j m 

 
be the 

approximate solution of Eq.(23) and for simplicity, we will rewrite this equation without 

the nonlinear term. This leads to  

, 1 , , 1
0 0 0

j j j

j j j
j k j k j k

k i k i k i
k k k

g s g s g s      
 

  

    

    

2 1 1 2 2 1 1 24
[ 4 6 4 ] ( )

j

jj j j j j j j j j jt
i i i i i t i i i i i

h
s s s s s h s s s s s




    


                

 , 2,3,..., 1 and 1,2,..., ,i n j m  

              

                                                     (26)

 
2 1 14 4 4 4

4 6 4
( ) ( ) ( ) ( )

j j j j

j j j jj j j jt t t t
t i t i t i t i

h h h h
h s h s h s h s

   
   
      

   
  

 
         

2 , 1 , , 14
1 1 1

( ) ,
j

j

j j j

j j j
j j k j k j kt

t i k i k i k i
k k k

h
h s g s g s g s




     


  
  

  


      

 

                       

, 2,3,..., 1 and 1,2,..., ,i n j m  

                                                           

(27) 

Eq.(27) will be rewritten as: 

1 2 2 1 3 2 1 1 2 , 1 , , 1
1 1 1

( ),
j j j

j j j
j j j j j j k j k j k

i i i i i k i k i k i
k k k

a s a s a s a s a s g s g s g s      
     

  

        

                        

  

2,3,..., 1 and 1,2,..., ,i n j m  

                                                          

(28)

 
where 

 

1 2 34
, ( ), (4 )) and ( 6 ).

j

j j jt
t t t

h
h a h h a h h a h h


  
    


          

 

Lemma 4: [9] 

For 0 ( ) 1,t   the coefficients ( ), , 0,1,2,...t kg k   satisfies  

(1) ( ),0 ( ),1 ( ),1, ( ), 0 for 1,2,...t t t kg g t g k       , 

(2) ( ), ( ),
0 1

0, , 1.
n

t k t k
k k

g n N g 




 

       

The round-off error is defined as: 

 , 2,3,..., 1 and 1,2,...,j j j
i i iu s i n j m                                                (29) 

This error satisfies the Eq.(28), then we have:  
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1 2 2 1 3 2 1 1 2 , 1 , , 1
1 1 1

,
j j j

j j j
j j j j j j k j k j k

i i i i i k i k i k i
k k k

a a a a a g g g              
     

  

        

 

              

2,3,..., 1 and 1,2,..., ,i n j m  

                                                              

(30)

 Let us represent the error function ( ) , 0,1,2,...,ii i n     as a Fourier series  

  
0

, 1, 0,1,..., ,k

n
q i

i k
k

A e i n
  



                                                       (31) 

where kq k . 

 For measuring the magnitude of the error vector 

1 2 1( ) [ , ,..., ] , 0,1,2,...,j j j j T
nx j m      , we use the discrete 2l norm of the form: 

2

1 2

1
1

, 0,1,..., .
n

j j

l i

j m  




 
  
 
                                                          (32) 

Assume that the solution of the error Eq.(30) has the form: 

  , ,j qi t
i j je e                                                                                (33) 

and  is a complex number.  

Substituting by Eq. (33) into Eq.(30), we obtain 

  ( 2) ( 1) ( 1) ( 2)
1 2 3 2 1

q i q i qi q i q i
j j j j ja e a e a e a e a e                    

 ( 1) ( 1)
, , ,

1 1 1

( )
j j j

j j j
q i qi q i

k j k k j k k j k
k k k

g e g e g e     
        

  
  

   

 , 2,3,..., 1 and 1,2,..., .i n j m                     (34) 

By straightforward, this equation can be simplified into the form: 

1 2 3 ,
1

(2 cos2 2 cos ) (2 cos ) , 1,2,..., ,
j

j

j k j k
k

a q a q a q g j m       


                 (35) 

From which we can accomplish that 

,
21 2 3

1 1,2,..., ,
(2 cos2 2 cos )

(2 cos )
( ),

j

j

j k j k
k

j j g j m
a q a q a

q
  

 

  
 


 

 


                             (36) 

Lemma 5 

If , 1,2,..., ,j j m   satisfy Eq.(36), then we have 0j  . 

Proof. Using the mathematical induction, for 1j   in Eq.(36), then we acquire  
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1

1 2 3

0
(2 cos2 2 cos )

(2 cos )j

a q a q a

q


 

  





 


 

Then  

 
1

1 2 3

0
(2 cos2 2 cos )

(2 cos )j

a q a q a

q


 

  





 



 

Substituting by the values of 1 2 3, anda a a  we find that 
 

1 2 3(2 cos2 2 cos ) ( 2 cos )(1 (1 ) j

ta q a q a q h


           

 

2 4

2

8
(1 ) sin ( )) 8 sin ( )

2 2

j

t
j

h q q
h


 




    ,

 

It can be confirmed that 

1 2 3(2 cos2 2 cos )

(2 cos )
1

j

a q a q a

q

 

  

 


  

Then  

 1 0 ,                                                                                      (37) 

Now assume that 0 , 2,3,...,n n m   . 

Now returning to Eq.(36) and using Lemma 4, we get 

21 2 3

1 , 1,2,..., ,
(2 cos2 2 cos )

(2 cos )
( ),

j

j

j
k

j j k j k j m
a q a q a

q
g

 

  
  


  

 


 

 

21 2 3

11 2 3

1 2 3

1 2 3

, 0

, 0

0

0

(2 cos 2 2 cos )

(2 cos 2 2 cos )

(2 cos 2 2 cos )

(2 cos 2 2 cos )

(2 cos )
( )

(2 cos )
( ( ))

(2 cos )
( (1 ))

(2 cos )
.

j

j

j

j
k

j

k

j k

j k j

j j

a q a q a

a q a q a

a q a q a

a q a q a

q
g

q
g

q

q






 

 

 

 

  
 

  
  

  
  

  







 


 


 


 





  


 







 

Then we accomplish that 0 , 1,2,3,...,j j m   . 

Theorem 1 

The spline solution of the Eqns. (1-2) defined by Eq. (23) is unconditionally stable. 

Proof 
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Using Eq.(32) and Lemma 5, we achieve that  

  
2 2

0 , 1,2,3,...,j

l l
j m   . 

This completes the proof. 

 

4 Convergence  

The numerical scheme for the fractional partial differential equation is convergent 

of order p if and only if it is stable and consistent of order p [9]. In this section, we will 

discuss the convergence of our proposed scheme by using Fourier series method.  

We suppose that ( , )i ju x t
 
be the exact solution of Eq. (23) represented by Taylor series, 

then from Lemma 3 and using ( , ) (1,10) /12   , we acquire that the truncation error is: 

4( , )j
i tT O h  .  

Then, there is a positive constant 1c  depends on the analytical solution ( , )i ju x t  such 

that: 

4
1( ),j

i tT c h                                                           (38) 

The error is defined as follows: 

 ( , ) , 2,3,..., 1 and 1,2,..., ,j j
i i j ie u x t u i n j m                                         (39) 

Then we get: 

, 1 , , 1
0 0 0

( ( , ) ( , ) ( , ) )
j j j

j j j

k i j k k i j k k i j k
k k k

g u x t g u x t g u x t        
  

   

 
2 1 1 2[ ( , ) 4 ( , ) 6 ( , ) 4 ( , ) ( , )]i j i j i j i j i jh u x t u x t u x t u x t u x t        

 

                 

2 1 1 2( ( , ) ( , ) ( , ) ( , ) ( , ))j

t i j i j i j i j i jh u x t u x t u x t u x t u x t


           

 
1 1( ) , 2,3,..., 1 and 1,2,..., ,j j j j j

t i i i ih f f f T i n j m


           

      

(40) 

where ( ( , ))j
i i jf f u x t . 

To get the error equation, we subtract Eq. (23) from Eq. (40), then we achieve: 

, 1 , , 1
0 0 0

( )
j j j

j j j
j k j k j k

k i k i k i
k k k

g e g e g e      
 

  

   

  

         

2 1 1 2 2 1 1 2[ 4 6 4 ] ( )jj j j j j j j j j j
i i i i i t i i i i ih e e e e e h e e e e e
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1 1( ) , 2,3,..., 1 and 1,2,..., ,j j j j j
t i i i ih e e e T i n j m


           

                  

(41) 

where 
j j j

i i ie f f   and from condition (3) we get that 
j j

i ie e , then the error 

equation will be  

, 1 , , 1
0 0 0

( )
j j j

j j j
j k j k j k

k i k i k i
k k k

g e g e g e      
 

  

   

     

   

2 1 1 2 2 1 1 2[ 4 6 4 ] ( )jj j j j j j j j j j
i i i i i t i i i i ih e e e e e h e e e e e


                     

 

 

1 1( ) , 2,3,..., 1 and 1,2,..., ,j j j j j
t i i i ih e e e T i n j m

          

               

(42) 

with error boundary conditions , 0 0, 1,2,...,j j
ne e j m    . 

Eq.(42) can be rearranged as in the previous section, and it will take the form: 

1 2 2 1 3 2 1 1 2 , 1 , , 1
1 1 1

( )
j j j

j j j
j j j j j j k j k j k

i i i i i k i k i k i
k k k

a e a e a e a e a e g e g e g e      
     

  

        

 

     

1 1( ) , 2,3,..., 1 and 1,2,..., ,j j j j j
t i i i ih e e e T i n j m

          

                

(43) 

We define the discrete functions  

 /2 /2when , 1,2,..., 1,
( )

0 when 0 / 2 or1 / 2 1,

j
j i i ie x x x i n

e x
x x

 

 

 
    

 
    

 

and  

 /2 /2when , 1,2,..., 1,
( )

0 when 0 / 2 or1 / 2 1,

j
j i i iT x x x i n

T x
x x

 

 

 
    

 
    

 

( ) and ( )j je x T x can be expanded in Fourier series as 

 2( ) ( ) , 0,1,..., ,j kx
j

k

e x k e j m




                                                             (44) 

 
2( ) ( ) , 0,1,..., ,j kx

j
k

T x k e j m




                                                            (45) 

where 

 
1

2

0

( ) ( ) ,j kx
j k e x e dx                                                                     (46) 

1
2

0

( ) ( ) ,j kx
j k T x e dx                                                                    (47) 
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From definition of 2l norm and Parseval equality, we get 

2

112 2 2 2

1 0

( ) ( ) , 0,1,..., ,
n

j j j
i j

l i k

e e e x dx k j m 
 

 

                                  (48) 

and  

2

112 2 2 2

1 0

( ) ( ) , 0,1,..., ,
n

j j j
i j

l i k

T T T x dx k j m 
 

 

                                (49) 

Assume that  

  ,j i
i je e                                                                                 (50) 

and  

  ,j i
i jT e                                                                                 (51) 

where 2 k  . 

Substituting by Eqs. (50) and (51) into Eq.(43), we obtain: 

,
21 2 3

4
1)

(2 cos2 2 cos )

1
((2 cos )[( ] ),

j

j

j k j k
k

j j jg
a a a

    
 

    


 
 

     

       1,2,..., ,j m                                    (52) 

and 

 
1 2 3(2 cos2 2 cos ) ( 2 cos )(1 (1 ) j

ta a a h


           

 

2 4

2

8
(1 ) sin ( )) 8 sin ( ),

2 2

j

t
j

h
h


 




                          (53)

 

Lemma 6 

If 1,( 0,1,..., )j j m    satisfy Eq.(52) then 3 11 ( 1)j j c     ,where 3c is             

a positive constant and 0,1,...,j m . 

Proof  

From Eq.(38) and Eq.(49), we get  

2

4
1

4
2

( )

( ) , 0,1,..., ,

j
t

l

t

T c n h

c h j m

 



 

                                                           (54) 

where 2 1 1c c n c l  . 

From Eqs.(47) and (49), there is a positive constant 3c so that  
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  3 1 0,1,2,...,j c j m   ,                                                                    (55) 

and we have that 

  0 0  .                                                                                                (56) 

Using the mathematical induction, from Eq.(52), for 1j   we get : 

1

1 2 3

0
(2 cos 2 2 cos )

1
,

a a a


 


   

From Eqs.(53) and (55) we can find that; 

1 0 3 0c    , 

Now suppose that 

  3 0 , 1,2,..., ,j jc j m                                                                     (57) 

From Eqns (52) and (55) and Lemma 4 and by the same way as in the previous section 

we can find that: 

21 2 3

, 3

4

1 , 1 1

4

1
21 2 3

)
(2 cos 2 2 cos )

[ (

1
[(2 cos )[( ] ],

1
(2 cos )[( ) 1)] 1]

(2 cos2 2 cos )

j

j
k

kj

j j k j k j

j

k

j

j

a a a

g

g

j j k c
a a a



  
 

      

      
 



   




 

   

     
 



 

3

4

, 1
11 2 3

4

1 2 3

4

1 2 3

3 1

3 1

[

[ (1

[

1
(2 cos )[( ) ( 1]

(2 cos 2 2 cos )

1
(2 cos )[( )

(2 cos 2 2 cos )

1
(2 cos )(1 )

(2 cos 2 2 cos )

)

) ] 1]

1]

j

j

k
k

j j

j j

j g j c
a a a

j
a a a

j
a a a

j c

c

      
 

     
 

    
 



 





    
 

  
 

 
 

 

  

 



  

3 11 ( 1) ,j j c                                                                                    (58) 

Theorem 2  

The spline solution of the Eqns (1-2) defined by Eq. (23) is convergent, and the order of 

convergence is  4( )tO h  . 

Proof:  From Eqns.(48), (49), (50) and Lemma 6, we can find that 

2 23 3

1 1 4
2

4

( 1) ( 1) ( )

( ),

j
tl l

t

j c j ce T c h

c h
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where 
3 2( 1)c j c c  . This completes the proof.  

 

Numerical Results: 

In this section, the numerical results of ( , )u x t  for the non-linear time fractional 

Swift Hohenberg equation has been achieved for the one-dimensional domain for various 

values of fractional Brownian  as a function of time subjected to 0 ( ) 1t   and also 

the standard motion 1  . The effect of the parameters and length of the domain on the 

results are presented graphically. 

In the following, the approximate solutions ( , )u x t  for various values of   as       

a function of time using  1 2 3 4( , , , ) (2,6,3,0) /12       are represented in Fig.1 and    

Fig.2. Figs (4) and (4) represent the approximate solutions ( , )u x t  using 

1 2 3 4( , , , ) (28,245,56,1) /360     . Fig.(4) displays the approximate solutions ( , )u x t  

for the standard motion 0.5   and 1  .    
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Fig.(1-a), 3, 0.3and ( ) 0.5l t t     Fig.(1-b), 
2

3, 0.3and ( )l t t     

 Fig.(1-c), 6, 0.3 and ( ) 0.5l t t     

 

Fig.(1-d), 
2

6, 0.3 and ( )l t t     

 Fig.(1-e), 8, 0.3 and ( ) 1 0.1sinl t t      

 

Fig.(1-f), 10, 0.3 and ( ) 1 0.1sinl t t      

Fig.1, Approximate solutions ( , )u x t with 1 2 3 4( , , , ) (2,6,3,0) /12     . 
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Fig.(2-c), 3, 0.3 and ( ) 0.5l t t     Fig.(2-d), 
2

3, 0.3 and ( )l t t     

 

Fig.(2-e), 6, 0.3 and ( ) 0.5l t t     

 

Fig.(2-f), 
2

6, 0.3 and ( )l t t     

 

Fig.(2-e), 8, .3 and ( ) 0.5l t t     

 

Fig.(2-e), 
2

8, .3 and ( )l t t     

 

Fig.(2-a), 10, .3 and ( ) 0.5l t t     

 

Fig.(2-b), 
2

10, 0.3 and ( )l t t     

Fig2, Approximate solutions ( , )u x t with 1 2 3 4( , , , ) (2,6,3,0) /12     . 
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Fig.(3-a), 3, 0.3 and ( ) 0.5l t t     

 

Fig.(3-b), 
2

3, 0.3 and ( )l t t     

Fig.(3-c), 6, 0.3 and ( ) 0.5l t t     

 

Fig.(3-d), 
2

6, 0.3 and ( )l t t     

Fig.(3-e), 8, 0.3 and ( ) 1 0.1sinl t t      

 

Fig.(3-f), 10, 0.3 and ( ) 1 0.1sinl t t      

Fig.3, Approximate solutions ( , )u x t with 1 2 3 4( , , , ) (28,245,56,1) /360     . 
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Fig.(4-a), 3, .3 and 0.5l      
 Fig.(4-b), 3, 0.3 and 1l      

 

Fig.(4-c), 6, 0.3 and 0.5l      
 Fig.(4-d), 6, 0.3 and 1l      

     

Fig.(4-e), 8, 0.3 and 0.5l      

 

Fig.(4-f), 8, 0.3 and 1l      

       

Fig.(4-g), 10, 0.3 and 0.5l      
 

Fig.(4-h), 10, 0.3 and 1l      

Fig.4, Approximate solutions ( , )u x t  using 1 2 3 4( , , , ) (28,245,56,1) /360     . 
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These figures demonstrate the effects of   and l  on the solutions as illustrated in 

resulted figures. Fig.1, Fig.2 and Fig.3 express the effect of time varying fractional order 
( )t , on the solutions. Comparing the obtained results plotted in Figs 1 and 3, it can be 

found that there is a relatively varying in the results according to the used scheme. It can 

be observed that our obtained results for 1 and 0.5   are matched with that 

published in [16, 18, 21-22]. All calculations are implemented with MATLAB R2015a. 

 

Conclusion  

In this paper, discrete spline function is used to approximate solution of variable 

time-fractional Swift-Hohenberg equation in the sense of Riemann Liouville derivative. 

The scheme is tested for some cases. The results demonstrate the reliability and 

efficiency of the algorithm developed. Stability and convergence analysis of the methods 

are presented. For the illustration of the practical usefulness of the proposed methods, 

some numerical results are included.  
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